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Abstract

An artificial neural network (ANN) approach was used to correlate experimentally determined Colburn j-factors and Fanning friction
factors for flow of liquid water in straight tubes with internal helical fins. Experimental data came from eight enhanced tubes with helix
angles between 25� and 48�, number of fin starts between 10 and 45, fin height-to-diameter ratios between 0.0199 and 0.0327, and Rey-
nolds numbers ranging from 12,000 to 60,000. The performance of the neural networks was found to be superior compared to the cor-
responding power-law regressions. The ANNs were subsequently used to predict data of other researchers but the results were less
accurate. The ANN training database was therefore expanded to include experimental data from two independent investigations. The
ANNs trained with the combined database showed satisfactory results, and were superior to algebraic power-law correlations developed
with the combined database.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Industrial use of heat transfer enhancement has become
widespread. The goal of heat transfer enhancement is to
reduce the size and cost of heat exchanger equipment.
Webb [1] gives an excellent overview of different enhance-
ment mechanisms available in commercial tubes.

One contemporary enhancement geometry is the helical
fin shown in Fig. 1, which is described by several geometric
variables. Fig. 1 also provides a pictorial description of
these variables, which include: the fin height (e), the fin
pitch (p), the helix angle (a), number of starts (Ns), and
included angle (b). The fin height is the distance measured
from the internal wall of the tube to the top of the fin. The
fin pitch is the distance between the centers of two fins mea-
sured in the axial direction. The helix angle is the angle the
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fin forms with the tube axis. The number of starts refers to
how many fins one can count around the circumference of
the tube. Finally, the angle at which the sides of the fin
meet is called the included angle.

An extensive literature survey of research on helically-
finned tubes is given in Zdaniuk and Chamra [2]. Despite
a considerable amount of study, the characteristics of flow
inside helically-finned tubes are still not very well under-
stood because the physics governing the flow are very com-
plex and experimental data are limited. The current
approach to predicting pressure drop and heat transfer in
helically-finned tubes is to use algebraic correlations based
on least-squares regression. Regression techniques per-
formed on experimental data require mathematical func-
tional form assumptions, which limit their accuracy and
generality. To address these limitations, techniques that
can effectively overcome the complexity of the problem
without ad hoc assumptions are needed. One of these tech-
niques is the artificial neural network (ANN), inspired by
the biological network of neurons in the brain.

mailto:zdaniuk@me.msstate.edu


Nomenclature

b node bias
D tube diameter (m)
e fin height (m)
f Fanning friction factor
F node function
j Colburn j-factor: j = StPr2/3

MSE mean squared error: MSE ¼P
ðvalue from experiment�predicted valueÞ2

number of measurements

Ns number of fin starts
Nu Nusselt number
p axial fin pitch (m)
Pr Prandtl number
Re Reynolds number
S number of nodes in a layer

St Stanton number
t average fin width (m)
w weight
W weight matrix
x node input/output

Greek symbols

a helix angle (�)
a0 and a00 corrugation shape angles (�)
b included angle (�)

Superscript
* refers to normalized network inputs and outputs

Fig. 1. A helically-finned tube and its geometry.

4714 G.J. Zdaniuk et al. / International Journal of Heat and Mass Transfer 50 (2007) 4713–4723
2. Artificial neural networks and heat transfer

Despite the complexity of the natural environment, liv-
ing creatures are able to perform involved activities within
their ecosystems. Animals can rapidly process vast
amounts of data and make ‘‘calculated” decisions. This
capability, attributed to the nervous system, is partly
acquired and partly enhanced through a process called
learning. Last century’s advancements in bio-medical sci-
ences have shed some light on the functioning of the ner-
vous system. Studies in bio-medicine and psychology
have attempted to understand the brain and its elementary
component – the neuron. Knowledge gained in this topic
encouraged scientists to apply the concept of a neuron to
mathematics and logic, giving birth to artificial neural net-
works (ANNs).
The purpose of ANNs is to provide solution algorithms
to complex problems such as classification, clustering, data
compression, pattern association, function approximation,
forecasting, control applications, or optimization. To many
researchers dealing with these topics, ANNs are a subject
of study in themselves. A brief introduction to the funda-
mentals of ANNs is given in Zdaniuk [3]. Readers who
are interested in learning more about ANNs are encour-
aged to explore some of the many texts on this subject
(e.g., Haykin [4] or Mehrotra et al. [5]).

Because ANNs have emerged relatively recently, their
presence in the thermal science literature is limited. Section
3 describes several articles that describe how ANNs can be
implemented successfully in heat transfer and fluid flow
problems.

Thibault and Grandjean [6] were one of the early
authors to show the use of ANNs in heat transfer data
analysis. Thibault and Grandjean [6] solved three different
heat transfer problems using three-layered, feed-forward
ANNs: a thermocouple lookup table, a series of correla-
tions between Nusselt and Rayleigh numbers for the free
convection around horizontal smooth cylinders, and the
problem of natural convection along slender vertical cylin-
ders with variable surface heat flux. Thibault and Grand-
jean [6] concluded that neural networks can be used
efficiently to model and correlate heat transfer data without
the burden of finding appropriate model structures to fit
experimental data. The disadvantage of ANNs is the
impossibility, simply by inspection, of determining the
influence that one variable has on an output variable.
ANNs, therefore, lack the transparency of most standard
mathematical expressions.

Sen and Yang [7] described the scope of ANNs and
genetic algorithm techniques in thermal science applica-
tions including an exhaustive bibliography. Sen and Yang
[7] presented two interesting examples that use ANNs to
predict the performance of compact heat exchangers. The
first heat exchanger was a single-row, fin-tube, cross-flow



Fig. 2. Corrugation angles investigated by Chen et al. [22].
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air-to-water type, and the second one was similar but with
more tube rows, air-side condensation, and variable fin
spacing. The authors’ purpose was to compare the mathe-
matical correlations for heat transfer with an ANN
approach. Sen and Yang [7] proved that in both cases the
ANN approach yields more accurate results. The explana-
tion is worth citing: ‘‘results suggest that the ANNs have
the ability of recognizing all the consistent patterns in the
training data including the relevant physics as well as ran-
dom and biased measurement errors. (. . .) However, the
ANN does not know and does not have to know what
the physics is. It completely bypasses simplifying assump-
tions such as the use of coefficient of heat transfer. On
the other hand, any unintended and biased errors in the
training data set are also picked up by the ANN. The
trained ANN, therefore, is not better than the training
data, but not worse either.” Finally, Sen and Yang [7] also
demonstrated a successful application of ANNs for tran-
sient analysis of the first of the two heat exchangers.

Kalogirou [8] presented a review of various applications
of ANNs in energy problems. The problems were classified
into six thematic categories, and each category had subsec-
tions with specific examples as well as references. The cat-
egories described by Kalogirou [8] were as follows:

(1) Modeling various aspects of a solar steam generator.
(2) HVAC systems: estimation of building heating loads,

prediction of energy use in commercial buildings,
optimization of energy consumption by HVAC sys-
tems, or controlling a bus air conditioning system.

(3) Solar radiation.
(4) Modeling and control in power generation systems:

combustion modeling, control of a thermal plant, or
analysis of harmonic power distortion.

(5) Forecasting and prediction of power consumption
and cost.

(6) Refrigeration: frost prediction on evaporator coils.

Ashforth-Frost et al. [9] described a multitude of uses of
ANNs in heat transfer and fluid mechanics with emphasis
on visualization processing techniques such as particle
image velocimetry. The authors reported several references
that used ANNs to recognize different geometric patterns
in multiphase flows. In these cases, ANNs have replaced
more manual methods. ANN modeling of physiological
flows was also suggested as a solution to very complex
medical analyses. Furthermore, the authors mentioned
inverse problems as being good candidates for ANN treat-
ment due to their sensitivity to noise and reported several
successful examples reported in the literature.

ANNs were also used to correlate two-phase flow data.
Kelleher et al. [10] investigated data from a series of exper-
iments on R-114 and R-113 pool boiling heat transfer from
a vertical bank of tubes with variable amounts of oil pres-
ent in the refrigerant. Their objective was to employ the
neural network technique as a method of using experimen-
tal data to predict heat transfer behavior and to make the
heat transfer predictions more accurate than regular math-
ematical correlations, less reliant on assumptions, and eas-
ier to use. After training, Kelleher et al.’s [10] network was
able to accurately predict the heat flux for 72 different tube
correlations and varying superheat. The average percent
errors were well under 10%.

Heat transfer literature is most abundant in examples of
ANNs used for performance prediction and control of heat
exchangers (as in [7]). A number of publications in this
topic originated at the University of Notre Dame (Pach-
eco-Vega et al. [11–13], and Diaz et al. [14–17]). Another
example worthy of note is Islamoglu [18] who used a
feed-forward backpropagation ANN to predict heat trans-
fer rates of a wire-on-tube type heat exchanger widely used
in small refrigeration systems. Nineteen experiments were
conducted in three air-flow modes: all cross-, wire cross-,
and tube cross-flow. Islamoglu’s [18] network had twelve
input nodes (describing heat exchanger geometry and fluid
flow rates), one output node corresponding to the heat flux,
and one hidden layer with five nodes. The data were suc-
cessfully correlated with a mean relative error of 4%
(7.94% maximum relative error).

ANNs have also been used to characterize various flows
inside tubes and channels. Ghajar et al. [19] used ANNs to
significantly improve heat transfer correlations in the tran-
sition region for a circular tube with three different inlet
configurations. Islamoglu and Kurt [20] trained an ANN
to predict heat transfer from a channel with triangular cor-
rugations. Scalabrin and Piazza [21] applied neural net-
works to analyze heat transfer from tubes with
supercritical carbon dioxide. Chen et al. [22] analyzed spi-
rally corrugated tubes in terms of ANNs. However, the
focus was only on the shape of the corrugation and not
the helix angle. Chen et al. [22] tested tubes with four starts,
a similar pitch (�9 mm), diameter (�18.9 mm), ridge
height (�2.2 mm), and helix angle (�61�) but different cor-
rugation shapes. The shape of the corrugation was quanti-
fied in terms of angles a0 and a00 as shown in Fig. 2. The
authors devised a radial-basis function ANN that corre-
lated the angles of the triangular groove, a0 and a00, with
the inside heat transfer coefficient. Next, they used the
ANN to determine the optimal corrugation shape. The
highest value for the heat transfer coefficient occurred at
a00 � 90� and a0 � 62�. This result was outside of the range
of tested tubes.

Albeit small, the number of publications described here
indicates that ANNs can be used for a wide range of heat
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transfer and fluid problems. Nevertheless, ANNs have not
been applied to correlate heat transfer and friction with all
of the necessary geometric parameters of a helically-finned
tube. Such attempt is made in this publication.

3. Experimental data

An experimental program devised to measure turbulent
pressure drop and heat transfer in helically-finned tubes
was conducted at Mississippi State University. The experi-
mental apparatus and procedure are described in detail in
Zdaniuk et al. [23]. Eight enhanced tubes and one plain
tube were tested. The tubes were mounted horizontally in
a straight annulus, forming a double-pipe counter-flow
heat exchanger with hot water flowing on the tube side
and cold water on the annulus side. The tubes were manu-
factured for condenser applications. The internal geometric
parameters of each tube are delineated in Table 1. The tube
material was copper-nickel. The internal fins were 0.48-mm
thick at the base and 0.2-mm thick at the tip, yielding an
included angle b of 41�. The dimensionless parameters
e/D, p/e, and p/D were obtained by introducing the axial
fin pitch, p = pD/(Ns tana) and calculating the dimension-
Table 1
Internal geometry of the test tubes

Tube # Internal structure

D (mm) e (mm) p (mm)

1 15.64 0.38 10.54
2 15.61 0.375 3.51
3 15.62 0.38 1.47
4 15.57 0.38 2.33
5 15.6 0.31 1.56
6 15.57 0.38 1.55
7 15.59 0.51 1.55
8 15.58 0.38 0.98
9 15.65 Plain
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Fig. 3. Measured Fanning friction factors for the eight tube geometries used
less factors. These dimensionless parameters allow a more
direct comparison between the tubes and provide
more physical insight into the results. Table 1 does not
explicitly indicate that the helix angle and the number of
starts are dimensionless parameters. However, since these
parameters are unitless, they can be treated as such. There-
fore, a and Ns can be used as direct parameters in any
correlation.

Experimentally determined Fanning friction factors and
Colburn j-factors are plotted in Figs. 3 and 4. Zdaniuk
et al. [23] calculated the uncertainty in the measured fric-
tion factor and heat transfer coefficient at 15% and 10%,
respectively. Zdaniuk et al. [23] reported that the maximum
percent difference between the plain tube measured friction
factor and the value predicted by the Blasius equation was
11%. Furthermore, the maximum percent difference
between the plain tube measured heat transfer coefficient
and the value predicted by the Dittus–Boelter equation
was 8%. Both errors being within the limits of experimental
uncertainty validated the experimental apparatus.

Zdaniuk et al. [23] used a regression-based procedure to
correlate the experimental data shown in Figs. 3 and 4 in
the following manner:
Dimensionless factors

Ns a (�) e/D p/e p/D

10 25 0.0243 27.729 0.674
30 25 0.0240 9.348 0.225
30 48 0.0243 3.876 0.0941
45 25 0.0244 6.134 0.150
45 35 0.0199 5.017 0.100
45 35 0.0244 4.085 0.100
45 35 0.0327 3.048 0.100
45 48 0.0244 2.577 0.0629

e
0000 40000 50000 60000

in the current study, plotted with the Blasius (smooth tube) correlation.
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Fig. 4. Measured Colburn j-factors for the eight tube geometries used in the current study, plotted with the Dittus–Boelter (smooth tube) correlation.
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f ¼ 0:128Re�0:305N 0:235
s ðe=DÞ0:319a0:397 ð1Þ

j ¼ 0:029Re�0:347N 0:253
s ðe=DÞ0:0877a0:362 ð2Þ

Eqs. (1) and (2) were shown to predict the vast majority of
experimental data with an error of less than 10%. The mean
squared prediction errors of Eqs. (1) and (2) were MSE =
1.070 � 10�6 and MSE = 6.945 � 10�8, respectively.
4. Artificial neural network development

4.1. Notation

Fig. 5 shows a general three-layer ANN and the nota-
tion employed. Due to the large number of parameters
involved, developing an unambiguous way of presenting
the constants and functions that describe a neural network
is important. In this study, the software employed for
ANN development was MATLAB, so the notation pre-
sented here is almost identical to that used by MATLAB.
The only difference is that MATLAB indexing must start
at 1 and not 0; so in MATLAB, all the 0-indexed variables
Fig. 5. Neural netw
are essentially replaced by a different variable. The consis-
tency of the notation presented herein allows MATLAB to
execute computations at each layer rapidly because of its
matrix algebra capability ([24]).

The index-0 layer represents inputs (see Fig. 5). X0 is a
column vector of inputs of size S0; whereas, S1, S2, and
S3 are the number of nodes in layer 1, 2, and 3, respectively.
W1,0 is a weight matrix feeding the inputs to layer 1. The
weight matrix is constructed such that entry W 1;0

j;k multiplies
input k and feeds it into node j in layer 1. In general, W l;m

j;k

multiplies output k from layer m and feeds it into node j in
layer l. b is the bias column vector. Its size corresponds to
the number of nodes in a given layer. F is a vector of node
functions (MATLAB feed-forward backpropagation net-
works utilize either linear, log-sigmoid, or tan-sigmoid
functions) and generally, the same function is used for
the entire layer.

The current study reports weights and biases as matrices
and vectors, respectively, in the notation presented above.
The names of the reported ANNs also contain the descrip-
tion of the network’s architecture. For example,
‘‘f_ANN_4LS_3LS_1LIN” stands for a friction factor
ork notation.



Table 2
Mean squared errors of ANNs trained with 50% of data

f j

Network MSE Network MSE

f_4LS_3LS_1LIN 7.7760 � 10�9 j_4LS_3LS_1LIN 1.0062 � 10�9

f_3LS_2LS_1LIN 1.6848 � 10�8 j_3LS_2LS_1LIN 2.2488 � 10�9

F_4LS_1LIN 8.3616 � 10�9 j_4LS_1LIN 1.9653 � 10�9

F_2LS_1LIN 1.0061 � 10�7 j_2LS_1LIN 6.3833 � 10�9

F_2LS_1LS 1.1755 � 10�7 j_2LS_1LS 6.5631 � 10�9
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network with 4 nodes in layer 1 using log-sigmoid functions
[in MATLAB: logsig(x) = 1/(1 + exp(�x))], 3 nodes in
layer 2 using log-sigmoid functions, and 1 node in layer 3
using a linear function [in MATLAB: purelin(x) = x].

4.2. Normalization of experimental data

When training ANNs, it is advantageous to normalize
the inputs and targets to ensure that all the weights are
within the same order of magnitude. The normalized data
will be denoted with the symbol ‘‘*”. The data from the
current study have been normalized in the following
fashion:

Re� ¼ Re� 1800

Reþ 1800

� �2

ð3Þ

N �s ¼
N s

100
ð4Þ

e=D� ¼ 10 � e=D ð5Þ
a� ¼ sinðaÞ ð6Þ
f � ¼ 10 � f ð7Þ
j� ¼ 100 � j ð8Þ

The significance of Eq. (3) is that it forces Re* to zero if
Re = 1800 (critical Reynolds number for transition) and
to one if Re is large. The other normalizing equations have
been chosen for their simplicity. Moreover, the inputs to
every neural network in this study have been organized in
the following manner:

x0 ¼

N �s
a�

e=D�

Re�

8>>><
>>>:

9>>>=
>>>;

ð9Þ
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Fig. 6. Scatter plot indicating the performance of the f_4LS_1LIN ANN
trained with 50% data.
4.3. Determination of optimal network architecture

The performance of an ANN depends on its architec-
ture. Large networks can learn complex functions, but
require more effort to train and to report. Hence, the net-
work selection process is a compromise between a small
network size and a minimal prediction error. The architec-
ture of the optimal network to be used for prediction of
friction and j-factors in helically-finned tubes was deter-
mined for this study by training different networks and
evaluating their performance with the mean squared error
(MSE) criterion. Half of the experimental data (every other
Reynolds number) from each tube was put into a training
basket, while the entire data set was used for validation.
The Levenberg–Marquardt algorithm (Levenberg [25]
and Marquardt [26]) was used for the training process.
Training was stopped when the MSE of the entire data
set reached a minimum. The training results were compiled
in Table 2, which lists the MSEs of all networks trained
with 50% of experimental data. The idea behind the selec-
tion of the various networks in Table 2 was to start out
with an arbitrary 4-3-1 network and to remove nodes and
layers to see what happens to the network’s performance.
Initially, one node was removed from each of the first
two layers to yield a 3-2-1 network. Next, the second layer
was removed to yield a 4-1 network. Then, a 2-1 network
was constructed. For the 2-1 case, a log-sigmoid output
node function was also tested, but showed no improvement
in performance.

Table 2 reveals that even the worst performing net-
works, f_2LS_1LS and j_2LS_1LS, have a smaller mean
squared error than the power-law regression presented in
Section 4.2 [Eqs. (1) and (2) showed, respectively, a MSE
of 1.070 � 10�6 for f and a MSE of 6.945 � 10�8 for j].
The 4-3-1 architecture exhibited the smallest MSE. Remov-
ing one node from the first two layers deteriorated the net-
works’ performance more than removing the second layer.
Because of the large number of variables associated with
the 4-3-1 networks, the 4-1 network appears to be the opti-
mal architecture for prediction of f and j in helically-finned
tubes. Additional information (i.e., weights, biases, and
training curves) about the networks listed in Table 2 are
given in Zdaniuk [3].

The use of the MSE is an excellent numerical criterion
for evaluating the performance of a prediction tool. Never-
theless, a visual inspection of the error behavior is also very
important. Consider the performance of the f_4LS_1LIN
network depicted in Fig. 6 and the j_4LS_1LIN network
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in Fig. 7. Both networks were trained with 50% of experi-
mental data as described earlier. Both figures clearly show
that the 4-1 network geometry works very well. Based on
this visual inspection and the MSE values of Table 2, the
prediction (or ‘‘regression”) error associated with the 4-1
ANNs trained with 50% of data can be taken as negligible
compared to the experimental uncertainty.

The information presented so far demonstrates that the
ANN does not know and does not have to know what the
physics of the problem are. The ANN completely bypasses
simplifying assumptions such as the use of a power-law
equation. On the other hand, any unintended and biased
errors in the training data set are also picked up by the
ANN. As noted by Sen and Yang [7], the trained ANN
is therefore not better than the training data, but not worse
either.

4.4. Assessment of the networks’ ability to generalize

The ANNs developed so far were trained with 50% of
data from all tubes. One can postulate that such networks
only learn to ‘‘interpolate” between the Re numbers they
were trained with and are unable to predict the perfor-
mance of unknown geometries. The current section
attempts to show that the 4-1 networks are indeed able
to generalize.

Table 3 delineates the mean squared errors (MSE) of
f_4LS_1LIN and j_4LS_1LIN networks trained with data
Table 3
MSE’s of networks trained with selected tube data

Training tubes MSE

f_4LS_1LIN j_4LS_1LIN

1 and 5 1.321 � 10�5 3.329 � 10�7

1, 3, and 5 9.290 � 10�7 2.324 � 10�7

1, 3, 5, and 7 6.438 � 10�7 8.794 � 10�9

1, 3, 4, 5, and 7 7.060 � 10�7 1.668 � 10�8

1, 3, 4, 5, 7, and 8 4.713 � 10�8 6.442 � 10�9
from 2, 3, 4, 5, and 6 tubes and evaluated with all of the
experimental data (8 tubes). Table 3 implies that the ANNs
trained with selected tube data performed worse than the
networks trained with 50% of data from all 8 tubes (see
Table 2). However, if enough tubes were provided for
training, the ANNs performed better than correlations
(1) and (2). As expected, the network performance gener-
ally improved as additional tubes were put in the training
basket. In the case of the f_4LS_1LIN network, 6 training
tubes were needed to obtain satisfactory performance. The
j_4LS_1LIN network was more perceptive and showed
outstanding results with 4 training tubes. The networks’
performance was sensitive to the randomly-generated ini-
tial guess, so the training procedure was repeated 10–20
times for each case, and only the best results were consid-
ered. The results summarized in Table 3 indicate that the
4LS-1LIN networks recommended in the previous section
are able to generalize and correctly predict the performance
of unknown geometries. Additional details about the net-
works summarized in Table 3 are given in Zdaniuk [3].

5. Evaluation of f- and j-networks with independent

experimental data

In this section, independent experimental data are used
to evaluate the performance of two f_4LS_1LIN and
j_4LS_1LIN networks. Because of their superior perfor-
mance on the current data set, ANNs trained with 50%
of experimental data from all tubes and ANNs trained with
6 out of 8 tubes were chosen for evaluation. Experimental
results of Webb et al. [27] and Jensen and Vlakancic [28]
were used as targets.

Table 4(a) provides the internal geometry of the tubes
tested by Webb et al. [27]. Table 4(a) tubes are numbered
W1 through W8 in order to distinguish them from the
tubes used in the current study. Webb et al. [27] used a dou-
ble-pipe counter-flow heat exchanger set up with liquid
water on the inside and boiling R-12 on the annulus side.
The water Reynolds number was varied between 20,000
and 80,000.

Jensen and Vlakancic [28] published experimental data
for six helically-finned tubes outlined in Table 4(b). The
tubes have been numbered JV1 through JV6 in order to
distinguish them from the tubes tested in the current study.
Jensen and Vlakancic [28] used two experimental test sec-
tions, one to obtain cooling results and one for heating
results; however, only cooling results are considered here.
Each test section was a double-pipe counter-flow water-
to-water heat exchanger. The inside Reynolds number
was varied between 10,000 and 72,000. Moreover, Jensen
and Vlakancic [28] Nu numbers were converted into j-fac-
tor format (using a mean fluid and wall temperatures of
35 �C and 20 �C, respectively) in order allow direct evalua-
tion of the j networks.

Table 5(a), Figs. 8 and 9 summarize the evaluation of
the f- and j-networks with experimental data of Webb
et al. [27]. The first conclusion drawn from the inspection



Table 4
Tubes tested by (a) Webb et al. [27], and (b) Jensen and Vlakancic [28]

Tube # I.D. (mm) e (mm) p (mm) t (mm) Ns a e/D p/e p/D

(a) Tubes tested by Webb et al. [27]

W1 15.54 Plain
W2 15.54 0.327 1.08 0.265 45 45� 0.0210 2.81 0.0591
W3 15.54 0.398 1.63 0.28 30 45� 0.0256 3.50 0.0896
W4 15.54 0.43 4.88 0.325 10 45� 0.0277 9.88 0.273
W5 15.54 0.466 1.74 0.275 40 35� 0.0300 3.31 0.0993
W6 15.54 0.493 2.79 0.28 25 35� 0.0317 5.02 0.159
W7 15.54 0.532 4.19 0.28 25 25� 0.0342 7.05 0.241
W8 15.54 0.554 5.82 0.28 18 25� 0.0356 9.77 0.348

(b) Tubes reported by Jensen and Vlakancic [28]

JV1 23.64 1.16 16.079 1.00 8 30� 0.0491 13.861 0.680
JV2 23.78 1.20 9.243 1.02 14 30� 0.0505 7.702 0.389
JV3 23.70 1.30 4.299 0.82 30 30� 0.0549 3.307 0.181
JV4 22.10 0.22 1.286 0.58 54 45� 0.00996 5.844 0.0582
JV5 24.13 0.33 1.404 0.90 54 45� 0.0137 4.254 0.0582
JV6 22.08 0.44 1.285 0.54 54 45� 0.0199 2.920 0.0582

Table 5
Evaluation of f- and j-networks with data of (a) Webb et al. [27], and (b) Jensen and Vlakancic [28]

f j

ANN: MSE: Performance
shown on:

ANN: MSE: Performance
shown on:

(a) Using data of Webb et al.[27]

f_4LS_1LIN (trained w/ 50% of data
from all tubes)

1.216 � 10�5 Fig. 8 j_4LS_1LIN (trained w/ 50% of data
from all tubes)

4.600 � 10�6 Fig. 9

f_4LS_1LIN (trained w/ tubes 1, 3, 4, 5,
7, and 8)

2.756 � 10�5 j_4LS_1LIN (trained w/ tubes 1, 3, 4, 5,
7, and 8)

4.198 � 10�6

(b) Using data of Jensen and Vlakancic [28]

f_4LS_1LIN (trained w/ 50% of data
from all tubes)

2.798 � 10�4 Fig. 10 j_4LS_1LIN (trained w/ 50% of data
from all tubes)

5.389 � 10�6 Fig. 11

f_4LS_1LIN (trained w/ tubes 1, 3, 4, 5,
7, and 8)

1.995 � 10�5 j_4LS_1LIN (trained w/ tubes 1, 3, 4, 5,
7, and 8)

4.709 � 10�6
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Fig. 8. Evaluation of f_4LS_1LIN networks with experimental data of
Webb et al. [27].
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Fig. 9. Evaluation of j_4LS_1LIN networks with experimental data of
Webb et al. [27].
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of Figs. 8, 9 and Table 5(a) is that the neural networks do
not predict the data of Webb et al. [27] very well. Webb
et al.’s [27] friction data are over-predicted and heat trans-
fer data under-predicted by the neural networks. The
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results suggest a substantial difference in the experimental
results between the current study and that of Webb et al.
[27]. This conclusion is supported by the fact that there is
no clear advantage of using networks trained with all of
the tubes or with data from selected tubes, as indicated
by Table 5(a).

Table 5(b), Figs. 10 and 11 summarize the evaluation of
the f- and j-networks with experimental data of Jensen and
Vlakancic [28]. Generally, the performance of the ANNs
on the Jensen and Vlakancic [28] data was poor. The
f_4LS_1LIN network trained with 50% of data from all
tubes predicted negative friction factors for tube JV3 and
over-predicted tube JV4’s friction by as much as 400%
(see Fig. 10). The networks trained with 6 out of 8 tubes
performed slightly better than the ones trained with 50%
of the entire data. Nevertheless, the errors associated with
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Fig. 10. Evaluation of f_4LS_1LIN networks with experimental data of
Jensen and Vlakancic [28].
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Fig. 11. Evaluation of j_4LS_1LIN networks with experimental data of
Jensen and Vlakancic [28].
the f- and j-networks suggest that the data of Jensen and
Vlakancic [28] demonstrate a different Reynolds number
dependence than the data in the current study.

5.1. ANNs trained with a combined database

A common engineering practice is to average multiple
measurements to obtain the ‘‘best” value. Therefore, a net-
work trained with a database combining the results of Jen-
sen and Vlakancic [28], Webb et al. [27], and the current
study may prove to be a useful prediction tool. To create
such a tool, an f_4LS_1LIN and a j_4LS_1LIN network
were trained with 50% of data points (every other Reynolds
number) from a database combining the experimental
results of Webb et al. [27], Jensen and Vlakancic [28],
and the current study. The performance of these two
networks is depicted in Figs. 12 and 13, respectively. Both
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Fig. 12. Scatter plot showing the performance of the f_4LS_1LIN
network trained with 50% of combined data.
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Fig. 13. Scatter plot showing the performance of the j_4LS_1LIN
network trained with 50% of combined data.
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Fig. 14. Scatter plot showing the predictive performance of Eq. (10) for
Fanning friction factor.
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Fig. 15. Scatter plot showing the predictive performance of Eq. (11) for
Colburn j-factor.
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figures show that the majority of data points from the com-
bined set are predicted within 10% of the experiment. The
mean squared errors (MSE) of the f_4LS_1LIN and
j_4LS_1LIN networks are 4.553 � 10�7 and 7.671 � 10�8,
respectively, and are lower than the ones associated with
Eqs. (1) and (2) applied to any of the data sets (cf. Zdaniuk
et al. [23]). Based on the information presented so far, the
f_4LS_1LIN and j_4LS_1LIN networks trained with 50%
of data points from the combined database appear to be
the best available prediction tool for friction and heat
transfer in helically-finned tubes. The weights and biases
for these two networks are:

� f_4LS_1LIN ANN trained with 50% of points from the
combined database:

W 1;0¼

�7:2671 �0:98217 2:0073 0:091471

7:5391 1:7808 �2:2548 �0:15899

3:5592 �17:3752 4:0051 �0:0099933

�18:0686 �9:384 4:6424 1:322

2
6664

3
7775

b1¼

1:5625

�1:8321

7:5575

12:0355

2
6664

3
7775

W 2;1¼ 13:8559 13:3015 0:77504 �0:70134½ 	 b2¼ ½�13:4947	

� j_4LS_1LIN ANN trained with 50% of points from the
combined database:

W 1;0¼

�1:1545 �0:068708 �10:3588 2:0436

�8:1534 62:9377 �18:7554 �0:12242

7:2905 �127:338 16:7488 0:13477

�108:2838 �406:3062 �595:2478 1:2132

2
6664

3
7775

b1¼

2:5897

�30:5346

68:2465

402:9581

2
6666664

3
7777775

W 2;1¼ �2:0141 �173:9585 �174:9652 0:95102½ 	 b2¼ ½176:0276	

In order to gain total confidence that the neural network
approach yields superior results, the ANNs trained with
the combined database should be compared to algebraic
correlations obtained with the combined database. A
regression-based procedure used to correlate the experi-
mental data of Webb et al. [27], Jensen and Vlakancic
[28], and the current study yields the following equations
for f and j:

f ¼ 0:120Re�0:260N 0:267
s ðe=DÞ0:385a0:276 ð10Þ

j ¼ 0:0206Re�0:219N 0:220
s ðe=DÞ0:468a0:544 ð11Þ
The performance of Eqs. (10) and (11) is depicted graphi-
cally in Figs. 14 and 15, respectively. The mean squared er-
rors (MSE) are 5.343 � 10�6 for Eq. (10) and 1.071 � 10�6

for Eq. (11). Both errors are an order of magnitude higher
than the MSEs associated with the neural network ap-
proach to correlate the combined database.

The current results show that ANNs perform extremely
well on the data sets that they are trained with, but poorly
on independent data, with experimental discrepancies
being the most likely reason for disagreement. Most ANNs
were capable of outperforming algebraic correlations, but
the key aspect (other than the network’s geometry and
node functions) affecting the network performance was
the selection of the training data set. This selection must
be carried out carefully, so that there is enough variation
in the inputs for the network to establish trends. The more
data used in training process the better the network perfor-
mance. However, using too many data points during the
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training process can negatively affect the network’s ability
to generalize.

6. Conclusions

The various network architectures tested in this work
suggest the 4-1 feed-forward network with log-sigmoid
node functions in the first layer and a linear node function
in the output layer to be the most advantageous architec-
ture to use for prediction of helically-finned tube perfor-
mance. The 4LS_1LIN networks were accurate and were
able to generalize, given adequate training data. Problems
were encountered with data of other researchers, but these
problems were almost certainly due to inherent differences
in the experimental data, rather than to any fundamental
shortcoming of the network itself. The three data sets
contain possible bias errors, and ANNs learn to predict
data without being capable of isolating measurement
errors. Moreover, the power-law correlations (obtained
with a least-squares regression that takes into account
100% of data points) also lacked appropriate accuracy
(cf. Zdaniuk et al. [23]) when applied to the data of other
researchers.

Considering the limited availability of heat transfer and
friction data in helically-finned tubes, the recommended
prediction tool for this type of tube is the f_4LS_1LIN
and j_4LS_1LIN network trained with the combined
results of Webb et al. [27], Jensen and Vlakancic [28],
and the current study. The weights and biases for these
two networks are given in this manuscript with additional
details included in Zdaniuk [3].

The ultimate ANN would be trained with thousands of
accurately measured data points from hundreds of different
tubes and could predict friction factors and Colburn j-fac-
tors with virtually no error. Hence, neural network applica-
tions are well suited for manufacturers of heat exchange
equipment, who can tap into their extensive databases to
train state-of-the-art ANNs.
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